Azobenzene Polymers for Photonic Applications
نویسندگان
چکیده
Azobenzene, with two phenyl rings separated by an azo (–N=N–) bond, serves as the parent molecule for a broad class of aromatic azo compounds. These chromophores are versatile molecules, and have received much attention in research areas both fundamental and applied. The strong electronic absorption maximum can be tailored by ring substitution to fall anywhere from the ultraviolet (UV) to visible red regions, allowing chemical fine-tuning of color. This, combined with the fact that these azo groups are relatively robust and chemically stable, has prompted extensive study of azobenzene-based structures as dyes and colorants. The rigid mesogenic shape of the molecule is well suited to spontaneous organization into liquid crystalline (LC) phases, and hence polymers doped or functionalized with azobenzene-based chromophores (azo polymers) are common as LC media. With appropriate electron-donor–acceptor ring substitution, the p electron delocalization of the extended aromatic structure can yield high optical nonlinearity, and zo chromophores have seen extensive study for nonlinear optical applications as well. One of the most interesting properties of these chromophores however, and the main subject of this review, is the readily induced and reversible isomerization about the azo bond between the trans and cis geometric isomers and the geometric changes that result when azo chromophores are incorporated into polymers and other materials. This light-induced interconversion allows systems incorporating azobenzenes to be used as photoswitches, effecting rapid and reversible control over a variety of chemical, mechanical, electronic, and optical properties.
منابع مشابه
Photonic Materials and Devices
Our recent advances in solid-state optoelectronic materials and devices will be reviewed. In the area of glass optics, fabrication of novel microstructured and multi-core fibers and their use in realizing single mode lasers will be summarized. In organic and plastic optics, photorefractive polymers for 3D display applications and nonlinear optical polymers for high speed modulators in RF photon...
متن کاملPhotochemically Controlled Cross-Linking in Polymerized Crystalline Colloidal Array Photonic Crystals
We developed photochemically controlled photonic crystals which may be useful in novel recordable and erasable memories and/or display devices. Information is recorded and erased by exciting the photonic crystal with ∼360 nm UV light or ∼480 nm visible light. The information recorded is read out by measuring the photonic crystal diffraction wavelength. The active element of the device is an azo...
متن کاملOpposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture: molecular dynamics study.
Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used a...
متن کاملConstruction of stable polymeric vesicles based on azobenzene and beta-cyclodextrin grafted poly(glycerol methacrylate)s for potential applications in colon-specific drug delivery.
Polymeric vesicles constructed from cyclodextrin- and azobenzene-grafted poly(glycidyl methacrylate)s showed excellent stability owing to the multiple host-guest complexation. Upon culturing in Na2S2O4-contained buffer solution, cargo-loaded vesicles disassembled, for potential applications in colon-specific drug delivery.
متن کاملOptical and Physical Applications of Photocontrollable Materials: Azobenzene-Containing and Liquid Crystalline Polymers
Photocontrol of molecular alignment is an exceptionally-intelligent and useful strategy. It enables us to control optical coefficients, peripheral molecular alignments, surface relief structure, and actuation of substances by means of photoirradiation. Azobenzene-containing polymers and functionalized liquid crystalline polymers are well-known photocontrollable materials. In this paper, we intr...
متن کامل